Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides.

نویسندگان

  • Helena Safavi-Hemami
  • Qing Li
  • Ronneshia L Jackson
  • Albert S Song
  • Wouter Boomsma
  • Pradip K Bandyopadhyay
  • Christian W Gruber
  • Anthony W Purcell
  • Mark Yandell
  • Baldomero M Olivera
  • Lars Ellgaard
چکیده

Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed conotoxin-specific PDIs, significantly and differentially accelerate the kinetics of disulfide-bond formation of several conotoxins. Our results are consistent with a unique biological scenario associated with protein folding: The diversification of a family of foldases can be correlated with the rapid evolution of an unprecedented diversity of disulfide-rich structural domains expressed by venomous marine snails in the superfamily Conoidea.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Silico Identification of Protein Disulfide Isomerase Gene Families in the De Novo Assembled Transcriptomes of Four Different Species of the Genus Conus

Small peptides isolated from the venom of the marine snails belonging to the genus Conus have been largely studied because of their therapeutic value. These peptides can be classified in two groups. The largest one is composed by peptides rich in disulfide bonds, and referred to as conotoxins. Despite the importance of conotoxins given their pharmacology value, little is known about the protein...

متن کامل

Efficient oxidative folding of conotoxins and the radiation of venomous cone snails.

The 500 different species of venomous cone snails (genus Conus) use small, highly structured peptides (conotoxins) for interacting with prey, predators, and competitors. These peptides are produced by translating mRNA from many genes belonging to only a few gene superfamilies. Each translation product is processed to yield a great diversity of different mature toxin peptides (approximately 50,0...

متن کامل

Synergistic cooperation of PDI family members in peroxiredoxin 4-driven oxidative protein folding

The mammalian endoplasmic reticulum (ER) harbors disulfide bond-generating enzymes, including Ero1α and peroxiredoxin 4 (Prx4), and nearly 20 members of the protein disulfide isomerase family (PDIs), which together constitute a suitable environment for oxidative protein folding. Here, we clarified the Prx4 preferential recognition of two PDI family proteins, P5 and ERp46, and the mode of intera...

متن کامل

Identification of Conus peptidylprolyl cis-trans isomerases (PPIases) and assessment of their role in the oxidative folding of conotoxins.

Peptidylprolyl cis-trans isomerases (PPIases) are ubiquitous proteins that catalyze the cis-trans isomerization of prolines. A number of proteins, such as Drosophila rhodopsin and the human immunodeficiency viral protein HIV-1 Gag, have been identified as endogenous substrates for PPIases. However, very little is known about the interaction of PPIases with small, disulfide-rich peptides. Marine...

متن کامل

Functional Relationship between Protein Disulfide Isomerase Family Members during the Oxidative Folding of Human Secretory Proteins

To examine the relationship between protein disulfide isomerase family members within the mammalian endoplasmic reticulum, PDI, ERp57, ERp72, and P5 were depleted with high efficiency in human hepatoma cells, either singly or in combination. The impact was assessed on the oxidative folding of several well-characterized secretory proteins. We show that PDI plays a predominant role in oxidative f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 12  شماره 

صفحات  -

تاریخ انتشار 2016